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Odderon and photon exchange
in electroproduction of pseudoscalar mesons?
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Abstract. We investigate the reaction e p → e PS X where PS denotes a pseudoscalar meson π0, η, η′,
or ηc and X either a proton or resonance or continuum state into which the proton can go by diffrac-
tive excitation. At high energies photon and odderon exchange contribute to the reaction. The photon
exchange contribution is evaluated exactly using data for the total virtual photon-proton absorption cross
section. The odderon exchange contribution is calculated in nonperturbative QCD, using functional in-
tegral techniques and the model of the stochastic vacuum. For the proton we assume a quark-diquark
structure as suggested by the small odderon amplitude in pp and pp̄ forward scattering. We show that
odderon exchange leads to a much larger inelastic than elastic PS production cross section. Observation
of our reaction at HERA would establish the soft odderon as an exchange object on an equal footing with
the soft pomeron and would give us valuable insight into both the nucleon structure and the mechanism
of high energy diffractive scattering.

1 Introduction

The phenomenological (non-perturbative) pomeron has
long been established as an effective Regge pole whose
exchange governs high-energy diffractive hadron-hadron
scattering [1]. The pomeron carries vacuum quantum num-
bers C = P = +1, and there is no a priori reason why
a C = P = −1 partner, the phenomenological odderon
[2], should not exist. If present, the exchange of an odd-
eron Regge pole would produce a difference between pp
and pp̄ scattering at high energies and at small momen-
tum transfer. A particularly sensitive test is provided by
measurements of the forward real part of the pp and pp̄
scattering amplitudes, and they are consistent with the
absence of odderon exchange [3]. There are two possible
explanations for the apparent absence of the odderon. One
is that the non-perturbative odderon really does not ex-
ist. This seems implausible as QCD-based models of the
phenomenological pomeron can easily be extended to de-

? Supported by German Bundesministerium für Bildung und
Forschung (BMBF), Contract Nr. 05 7HD 91 P(0), by Deutsche
Forschungsgemeinschaft under grant no. GKR 216/1-98, by
PPARC, by DAAD and MINERVA-Stiftung.

a Permanent address: Department of Physics and Astron-
omy, University of Manchester, Manchester M13 9PL, UK

scribe a phenomenological odderon. Further a perturba-
tive “odderon”, namely three-gluon exchange1, is believed
to dominate large-angle pp and pp̄ scattering. One of the
most compelling arguments for a C = −1 exchange in high
energy scattering is provided by the pp and pp̄ differential
cross sections at the ISR where a deep dip in the former
process is transformed into a shoulder in the latter. The
second possibility is that the phenomenological odderon
does exist, but that its coupling to the nucleon in elastic
scattering at small t is extremely small. That is the view
we take here.

One successful approach to high-energy diffractive scat-
tering is based on functional integral techniques [9,10] and
the use of the model of the stochastic vacuum (MSV)
[11] to evaluate the correlation functions of the Wegner-
Wilson loops which occur in the formalism when applied
to hadron-hadron scattering [12,13]. This gives a remark-
ably good description of many different processes involv-

1 A lot of theoretical work has been devoted to calculating
perturbative QCD (pQCD) corrections to this type of odd-
eron [4–7]. The result seems to be that such corrections have
a small effect, for instance changing the (effective) intercept of
the odderon trajectory αO(0) by less than 10% [5,7,8] from the
value of 1, which is the result for the lowest order three gluon
exchange.
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Fig. 1a,b. Feynman diagrams for
pseudoscalar meson production in ep
scattering at high energies with odd-
eron a and photon b exchange.

ing the exchange of vacuum quantum numbers [13–17].
This model can easily be extended to the exchange of a
C = P = −1 object, and it has been shown that the clus-
tering of two quarks to form a diquark in a nucleon leads
to a drastic reduction in the odderon-N -N coupling [18].
The general result is rather model independent. It relies
on the fact that the quark-diquark density in a nucleon is
nearly symmetric under a parity transformation (if the di-
quark is sufficiently small) whereas the odderon coupling
changes sign. Therefore there is a cancelation when the
nucleon wave function is integrated over all angles. Specif-
ically, in the MSV it has been shown that the formation
of a diquark with a radius rD < 0.3 fm yields sufficient
suppression of the odderon coupling to the proton in or-
der to be in agreement with the upper limit allowed by
the measurements of the forward real part of the pp and
pp̄ scattering amplitudes.

It should be stressed that this argument is only valid if
the odderon is treated as a simple Regge pole near J = 1.
If a more complicated situation is permitted, as in [19],
then the phenomenology is very different and the sup-
pression of odderon exchange in pp and pp̄ scattering at
high energies is much less marked. However the data do
not require the additional complexity of double and triple
poles, so until demonstrated explicitly otherwise we prefer
to stay with the simplest model which agrees with data
and which allows essentially parameter-free predictions.

It is clearly advantageous if one can find high-energy
reactions which permit odderon exchange but exclude
pomeron exchange. Exclusive neutral pseudoscalar meson
production in ep scattering at high energies is one such,
providing a direct probe for odderon exchange [20,21]. Us-
ing a simple ansatz for the odderon, this cross section has
been calculated [22]. Because of the suppression of the
odderon-p-p coupling, the cross section due to photon-
photon fusion is comparable to that expected at best from
odderon exchange. Nonetheless there are kinematical dis-
tributions which could provide promising signals for the
odderon.

The suppression of the odderon coupling due to di-
quark formation does not hold if the nucleon is trans-
formed diffractively into an excited negative parity state.
In this case, even for a point like diquark the odderon
couples to the nucleon without any restriction [23] giving
promise of a significantly higher cross section for odderon
exchange in, for example, ep → eπ0X (where X stands

for diffractively excited proton states) compared to ep →
eπ0p. In fact this is much more representative of the real
experimental situation, as it is often not possible to say
whether the proton has recoiled quasi-elastically or has
been transformed into an excited state within some experi-
mentally defined mass range. At HERA the upper limit for
the recoil mass MX is typically ∼ 2 GeV. Accordingly we
calculate the contribution from odderon exchange to pseu-
doscalar meson production with nucleon fragmentation in
ep interactions at high energies, Fig. 1a. To complement
this we also calculate the contribution to the same process
from photon exchange, Fig. 1b. This latter calculation is
exact, limited only by the errors on the ep total cross sec-
tion for the (Q2, MX) range of relevance. When combined
with the previous calculation [22] of photon exchange for
the quasi-elastic process this provides an absolute predic-
tion for the cross section from the electromagnetic process
alone. Any measurement deviating significantly from this
would be strong evidence for the odderon. Thus we are
considering electroproduction of a pseudoscalar meson PS
= π0, η, η′, ηc with nucleon break-up:

e±(p1) + p(p) → e±(p′
1) + PS(k) + X(pX). (1)

We define q1 = p1 − p′
1, q2 = q1 − k = pX − p, s =

(p1 + p)2, W 2 = s2 = (q1 + p)2, t1 = q2
1 = −Q2 and

t2 = q2
2 . Here we treat the very small Q2 range. In the

H1 experiment at HERA the kinematical cuts for this so
called photoproduction region [24] are

ymin = 0.3 ≤ y ≤ 0.7 = ymax,

0 < Q2 < 0.01 GeV2, (2)

where, in the proton rest frame y = (pq1)/(pp1) is the
fractional energy loss of the incoming lepton. Due to the
cuts (2) the photons emitted by the e± are always nearly
on shell, and the equivalent photon approximation (EPA)
[25] is applicable. The total electroproduction cross section
for producing a PS in terms of the EPA is given by

σ =
∫ ymax

ymin

dy

y
n(y) σγp(s2) with s2 =ys + (1 − y)m2

p,

n(y) =
α

π

{(
1 − y +

y2

2

)
ln

( |t|u
|t|l

)
− m2

ey
2

|t|l
(
1 − |t|l

|t|u
)

−
(
1 − y

2

)2
ln

( |t|u/E2 + y2

|t|l/E2 + y2

)}
, (3)
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where mp is the nucleon mass, σγp is the total photo-
production cross section for the reaction, and n(y) is the
equivalent photon number [25] for a given energy fraction
of the incoming e± transfered to the γp subsystem. In the
proton rest frame E = pp1/mp is the energy of the incom-
ing e±. The upper limit |t|u is given by experiment (2),
|t|u=0.01 GeV2, and |t|l=m2

ey
2/(1 − y).

2 The odderon contribution

For convenience we discuss the odderon exchange contri-
bution to the reaction γp → π0X. The conversion to an
incident electron via the EPA is in principle straightfor-
ward, as is the replacement of the π0 by one of the other
pseudoscalars.

There are two apparently extreme approaches to this
calculation. One is to assume that the system X is dom-
inated by a small number of resonances, which for the
odderon should be a good approximation. The second is
to ignore any possible structure in the final system X and
represent it simply by a free quark-diquark pair. Both cal-
culations are performed and give similar results.

We discuss first resonance production. The break-up of
the nucleon by odderon exchange leads naturally to nega-
tive parity final states. The lowest lying nucleonic isospin
1/2 states with negative parity are the N(1520): JP = 3

2
−

and the N(1535): JP = 1
2

−. These are both compatible
with the diquark picture. For dynamical reasons a scalar
diquark is favored over a vector one [26]. The P-wave ex-
citation of a quark and a scalar diquark gives degenerate
nucleon resonances with quantum numbers JP = 3

2
−

, 1
2

−

which can readily be identified with these two observed
states.

It is easy to see that considering unpolarised cross sec-
tions, summed over both resonances, the quark spin degree
of freedom becomes irrelevant and the calculation reduces
to one where a spinless state is exited to a 2P resonance.

The scattering amplitude T (s2, t2), calculated in the
γp c.m. system, can be expressed through a profile func-
tion J(b):

T (s2, t2) = 2is2

∫
d2b eiq2T b J(b). (4)

The profile function is expressed in the model [13] as
an overlap of a dipole-dipole scattering amplitude J̃(b, r1,
z1, r2, z2) where b is the impact parameter of two lightlike
dipole trajectories with (transverse) size r1 and r2 respec-
tively. The quantities z1, z2 are the longitudinal momen-
tum fractions of the quarks in the dipoles.

It is of course necessary to take a profile function cor-
responding to the exchange of a C=P=−1 object [18].
Note that the model contains only the kinematical s2-
dependence shown in (4) which leads to an energy inde-
pendent cross section. The parameters of the model2 are

2 The parameters of the pion-photon overlap can be found in
[23]. The MSV parameters are: a=0.31 fm, 〈g2 FF 〉=3.0 GeV4,
Sp=0.85 fm as determined in [27].

the same as those used in [23] which were fixed at an en-
ergy of

√
s2=W=20 GeV. We return to the question of

energy dependence at the end of this section.
Hadronic amplitudes for production of hadronic reso-

nance states are obtained by smearing the dipole exten-
sions ri with the respective transition densities:

J(b)λ,λγ
=

∫
d2r1

4π
dz1

∫
d2r2

4π

∑
f,h1,h2

Ψ∗ π0

fh1h2
(r1, z1)

× Ψγ
λγ , fh1h2

(r1, z1)Ψ∗ 2P
λ (r2)Ψp(r2)J̃(b, r1, z1, r2). (5)

Here λγ , λ stands for the helicities of the photon and of
the orbital helicity of the resonance, respectively. In agree-
ment with the other applications of the model we use for
the quark-diquark wave function of the proton a Gaussian
with an extension parameter Sp adjusted to pp scattering
and neglect the dependence on the longitudinal momen-
tum fraction z2 in the purely hadronic overlap. Thus we
take for the proton wave function

Ψp(r2) =
√

2e−r2
2/4S2

p

Sp
. (6)

As the orbital wave function for the low lying degener-
ate excited states we choose an ansatz analogous to the
proton-wave function but in a P-state:

Ψ2P
λ (r2) = Ψ2P(r2) eiλθ2 ,

Ψ2P(r2) =
r2 e−r2

2/4S2
p

S2
p

(7)

with the same extension parameter Sp as for the proton.
An analogous strategy has been applied successfully for
the excited ρ states [16]. In (4),(7) we use q2T as x-axis
for the transverse vectors r1, r2 and b, so θ2 is the angle
of r2 in planar coordinates. The orbital helicity λ of the
2P state can take the values 0,±1, but the orbital helicity
λ = 0 cannot be excited in our model.

The photon-pion overlap is taken from [23]:∑
f,h1,h2

Ψ∗ π0

fh1h2
(r1, z1)Ψ

γ
λγ ,fh1h2

(r1, z1)

= i
e√
2
fπe−ω2r2

1/2eiλγθ2z1(1 − z1)f(z1)

× (
mq K1(mqr1) + r1ω

2K0(mqr1)
)

. (8)

Here mq is the quark mass, mq = 0.22 GeV. For a justifi-
cation of such a simple ansatz see [15]. It should be noted
that the γγ decay width of the π0 comes out correctly
with this overlap. The function f(z1) is given by [28]:

f(z1) = N
√

z1(1 − z1) exp
(

−M2
π(z1 − 1/2)2

2ω2

)
(9)

and ω and N are fixed by normalization.
To take advantage of global azimuthal invariance it is

useful to choose as new integration variables the relative
angles between b and r1(2), θ′

1(2) = θ1(2) − θb. Then with
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this choice of coordinates J̃ in (5) becomes independent
of θb and inserting (6), (7) and (8) into the scattering
amplitude (4) we get

Tλ,λγ

= 2is2

∫
b db dθb ei

√−t2b cos(θb)
∫

d2r1

4π
dz1

∫
d2r2

4π

×
[ ∑

f,h1,h2

Ψ∗ π0

fh1h2
(r1, z1)Ψ

γ
λγ ,fh1h2

(r1, z1)
]

θ1=0
Ψ∗ 2P (r2)

×ΨP(r2)eiλγ(θ′
1+θb)eiλ(θ′

2+θb)J̃(b, r1, z1, r2), (10)

where the wavefunctions now only depend on r1(2). Using
the relation∫ 2π

0
dθb ei

√−t2b cos(θb)einθb = (i)n2πJn(
√−t2b) (11)

we can now perform the θb integration and obtain finally
for the scattering amplitude

Tλ,λγ

= 2is2

∫
b db

∫
d2r1

4π
dz1

∫
d2r2

4π


 ∑

f,h1,h2

Ψ∗ π0

fh1h2
(r1, z1)

×Ψγ
λγ ,fh1h2

(r1, z1)

]
θ1=0

Ψ∗ 2P(r2)Ψp(r2)ei(λγθ′
1+λθ′

2)

×(−i)(λ+λγ)2πJ(λ+λγ)(
√−t2b) J̃(b, r1, z1, r2). (12)

The resulting differential cross section is:

dσO
γ p

dt2
=

1
16πs2

2

1
2

∑
λ

∑
λγ

|Tλ,λγ
|2. (13)

One of the features of the result (13) is, that the differ-
ential cross section in the forward direction (t2 = 0) does
not vanish due to the appearance of the Bessel function J0
in (12) for λ + λγ = 0. The differential cross section (13)
for photoproduction is displayed in Fig. 2. The integrated
cross section is:

σO

γ p(γp → π0{2P}) = 294 nb. (14)

As this photoproduction cross section is constant, i.e. in-
dependent of s2, the EPA conversion to electroproduction
can be achieved by simply multiplying it with a constant
cEPA = 0.0136 corresponding to the y integration in (3).
This gives

σO(ep → eπ0{2P}) = 4.01 nb. (15)

The other possibility, namely treating the final state X
in γ p → π0 X as a free quark-diquark pair, is achieved
by approximating the final state by a plane wave. This
is effectively invoking quark-hadron duality, and should
be a reasonable approximation if we are not interested
in the local form of the mass spectrum of X but only in

10 2

10 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|t2| / GeV2

dσ
/d

t 2 
/ (

nb
/G

eV
2 )

Fig. 2. The differential cross section dσO
γp/dt2 of the pro-

cess γp → π0{2P} as a function of t2. (A fit to this curve
is: dσO

γp/dt2 =a exp(−b|t2| − ct22) where a = 1523 nb, b =
5.44GeV−2, c = −0.80GeV−4)

the integral over the full mass spectrum. In this case the
integrated cross section was found to be [23]

σO

γp(γp → π0X) = 341 nb (16)

consistent with (14).
A good check for the use of quark-hadron duality in

diffractive processes is provided by the application of a
similar method to the reaction γp → ρX and its compar-
ison with elastic ρ photoproduction. One obtains in the
model [16]:

σ(γp → ρp) = 7.9 µb (17)

in good agreement with the pomeron contribution [29] at
W = 20 GeV to the total ρ photoproduction cross section
[30]. For the ratio one obtains3

σ(γp → ρX)
σ(γp → ρp)

≈ 1.5. (18)

in agreement with the data at HERA energies [31].
It should be noted that the results for diffractive dis-

sociation depend much more on the choice of the wave
functions than for elastic processes. In the latter the over-
lap becomes essentially the density and is constrained by
normalization. The photon-pion overlap has been tested
to some extent by the pion radiative decay, but there is
no such test for the proton-2P overlap. The odderon con-
tribution is also much more sensitive to the parameters of
the MSV than pomeron exchange. We have also applied
the matrix cumulant expansion technique [17], and with
the approximations as done there we found results differ-
ing from the above ones at most by 50%. Taking all these

3 We thank S. Weinstock for communicating this result prior
to publication.
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uncertainties into account we estimate the uncertainty in
the cross section in this model calculation to be at least a
factor 2 at W = 20 GeV.

Finally we return to the question of energy-depen-
dence. In hadron hadron scattering the increase of the
cross sections together with the shrinking of the diffrac-
tion peak can be well reproduced in this model by scaling
the hadronic radii by (W 2/400 GeV2)0.08/3 [13,17]. As-
suming that the same radial scaling reproduces the energy
dependence of the odderon contributions we find that the
integrated cross section scales like (W 2/400 GeV2)0.15,
leading to an enhancement of ca. 1.8 for HERA energies
as compared to W = 20 GeV.

3 The electromagnetic cross section

In this section we consider PS production mediated by
photon rather than odderon exchange (Fig. 1b). Again the
proton, now hit by the photon, is allowed to go into some
hadronic final state.

The coupling of a pseudoscalar meson PS to two pho-
tons is fixed as described in [22]. The Lorentz structure is
that of the triangle anomaly where the strength of the cou-
pling, parametrised by a constant uPS , can be extracted
from the partial decay width of the PS decaying into two
photons. The scattering amplitude in leading order per-
turbation theory of the electroweak interaction is

Sfi = i (2π)4 δ4(p + p1 − p′
1 − k − pX) Tfi,

Tfi = −e ū(p′
1)γ

µu(p1)
1
t1

uPS εµνρσ qρ
1qσ

2 T (t1, t2)
1
t2

× 〈X(pX)|e Jν(0)|P (p)〉. (19)

Here Jν is the hadronic part of the electromagnetic cur-
rent4 and the form factor T (t1, t2) is given in terms of a
vector meson dominance ansatz (cf. [22]).

We are not interested in properties due to polarisation
of the initial and final state particles and so average over
the initial particle polarisations and sum over the final
ones. In addition we are also not interested in momentum
distributions of the outgoing hadrons except, clearly, for
the PS. For this reason we perform the integrations over
their momenta.

Summing over all kinematically accessible states X the
differential cross section can be written as

d6σγ =
1

2 w(s, m2
p, m2

e)
d3p′

1

(2π)3 2 p
′0
1

d3k

(2π)3 2 k0 ρµν Pµν ,

ρµν :=
e2

t21

{
(gµν − qµ

1 qν
1

q2
1

) +
(2p1 − q1)µ(2p1 − q1)ν

q2
1

}
,

Pµν :=
e2

t22
u2

PS T 2(t1, t2)εµωαβqα
1 qβ

2 ενργδq
γ
1 qδ

2

× (2π)(2mp) W ρω,

w(x, y, z) := (x − (
√

y +
√

z)2)
1
2 (x − (

√
y − √

z)2)
1
2 . (20)

4 Throughout this Section all notations are as in [32]

Here Wρω is the usual hadron tensor as defined for ex-
ample in chapter 18 of [32] involving the two invariant
functions W1 and W2. If the sum over all kinematically ac-
cessible states is restricted to some subset invariant under
Lorentz and parity transformations the two invariant func-
tions W1,2 which appear in Wρω change, whereas the ten-
sor structures, multiplied by W1,2, do not. The photopro-
duction cross section of (3) for photon exchange σγp(s2)
is given by

σγ
γp(s2) =

∫
d3k

2k0(2π)3
1

2 w(s2, m2, t1)
1
2

(−gµν)

(u2
PS T 2 e2 εµωαβqα

1 qβ
2 ενργδq

γ
1 qδ

2)
1
t22

(2 π) (2mp) W ρω. (21)

We now evaluate (21) using the data on total γ∗p cross
section collected in [33] where the γ∗p c.m. energy is below
2.0 GeV and 0 ≤ |t2| ≤ 6.0 GeV2. As a check on the pro-
cedure we compare the result for the ∆(1232) resonance
region with an explicit calculation of ∆ electroproduction.

3.1 The resonance region

The total γ∗p absorption cross section Σ = σT + εσL in
the region of the main nucleon resonances has been deter-
mined in inelastic electron proton scattering experiments.
With the kinematical definitions of [34] the relation of σT

and σL to W1,2 is:

W1(M2
X , q2

2) =
1

4π2α

M2
X − m2

p

2 mp
σT (M2

X , q2
2),

W2(M2
X , q2

2) =
1

4π2α

M2
X − m2

p

2 mp
(1 − ν2/q2

2)−1

×[
σT (M2

X , q2
2) + σL(M2

X , q2
2)

]
,

ν =
1

2 mp
(M2

X − m2
p − q2

2). (22)

Here α is the fine structure constant. For very small pho-
ton virtualities there are photoproduction data in addi-
tion. In [33] all these data have been combined to extract
the following parametrisation of Σ as a function of the
photon virtuality q2

2 and the invariant mass squared of
the final state M2

X

ln
( Σ

G2
D

)
= a(M2

X) + b(M2
X) ln

( |q2|
|q2|0

)

+c(M2
X)| ln

( |q2|
|q2|0

)
|d(M2

X),

GD(q2
2) =

1
(1 − q2

2/0.71GeV2)2
. (23)

GD is the dipole form factor, |q2| (|q2|0) is the absolute
value of the photon momentum in the proton rest frame
for photon virtuality q2

2 (q2
2 = 0). The fit is restricted to

the range 1.11 ≤ MX ≤ 1.99 GeV. The functions a, b, c
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Fig. 3. The γ∗p absorption cross section Σ for q22 = −0.1
GeV2 as a histogram using the parametrisation (23)

are given in [33] only at discrete points5. The function d
is taken to be a constant, d = 3.0. To convert the fit to
a continuous function in M2

X and q2
2 we represent Σ as

a histogram. Figure 3 shows as an example Σ for a fixed
photon virtuality of q2

2 = −0.1 GeV2.
It was shown in [33] that the total virtual photon-

proton cross section for longitudinal photons σL is small
in the resonance region, so we neglect it in our discussion.
Setting thus σT = Σ, σL = 0 in (22) we get an analytic
expression for the hadron tensor Wµν and are in a posi-
tion to calculate the inelastic PS production cross section
(21), summing over all hadron final states X with invariant
mass 1.11 ≤ MX ≤ 1.99 GeV.

As a specific check on our procedure we shall want
to focus on a particular mass range, namely that of the
∆(1232) resonance. This can be achieved as follows. We
multiply σγp(s2) in (21) by

1 =
∫

d M2
X δ(p2

X − M2
X) (24)

and define

σ̃γ
γp(s2) :=

∫
d3k

2k0(2π)3
1

2 w(s2, t1 = 0, m2
p)

1
2

(−gµν)

×(4πα u2
PS T 2 εµωαβqα

1 qβ
2 ενργδq

γ
1 qδ

2)
1
t22

×(2 π) (2mp) W ρω(p2
X , t2) m2

p δ(p2
X − m2

X) (25)

Contracting the Lorentz indices in (25), inserting the ex-
plicit form of the hadron tensor and expressing the in-
variant functions through (22) we get finally for the cross
section of inelastic PS production

5 In the range 1.11 ≤ MX ≤ 1.755 in steps of ∆MX=0.015
GeV and in the range 1.755 ≤ MX ≤ 1.990 in steps of
∆MX=0.02 GeV.

Table 1. Total cross section for for inelastic and elastic PS
electroproduction by photon exchange.

σγ(e p → ePSX) σγ(e p → ePSp)

π0 2.0 pb 78.1 pb
η 1.9 pb 56.4 pb
η′ 3.1 pb 83.6 pb
ηc 0.3 pb 3.83 pb

σγ

=
∫ Mmax

Mmin

dMX
2 MX

m2
p

∫ ymax

ymin

dy

y
n(y)

∫ t2max

t2min

dt2
dσ̃γ

γp

dt2
(s2),

dσ̃γ
γp

dt2

=
m2

pT 2u2Σ(M2
X , t2)

64π2(s2 − m2
p)2t22

M2
X − m2

p

m4
p + (M2

X − t2)2 − 2m2
p(M2

X + t2)

×
{

m4
PS(m2

p − M2
X)2 − 2t2m

2
PS

(
M2

X(m2
PS + M2

X − s2)

+ m2
p(s2 − M2

X)
)

+ t22
(
m4

p + m4
PS + M4

X

+ 2m2
PS(2M2

X − s2) + 2m2
p(m2

PS − s2) − 2M2
Xs2 + 2s2

2
)

+ 2t32
(
s2 − m2

p − m2
PS − M2

X

)
+ t42

}
(26)

The integration limits with respect to t2 are just the kine-
matical limits of the two by two process γ + p → PS + X
as given, for example, in [35].

In the second row of Table 1 we list our results for the
total cross section of inelastic PS electroproduction in the
photoproduction region (2), calculated from (26). These
values are compared in the third row of Table 1 to the
results of elastic PS production calculated in terms of the
EPA in [22]. As we can read off from Table 1 inelastic PS
production integrated cross sections are very small com-
pared to the elastic ones. However in experimental analysis
one typically has to make additional cuts on the data and,
of course, this will change the ratio of inelastic to elastic
contributions. We explore this first for the t2-distribution.

To compare with the results of [22] it is convenient
to plot the differential cross section with respect to the
logarithm of −t2 rather than dσγ/dt2. Our results for π0

production are shown in Fig. 4, together with the results
of [22] for the elastic case. The cross sections for the other
pseudoscalar mesons in essence scale as the coupling con-
stants u2

PS . It is immediately clear that the large difference
in integrated cross section between the elastic and inelas-
tic case is coming from the region of very small |t2|. In the
limit t2 → 0 dσγ/dt2 goes to a constant for the break-up
calculation and simultaneously the available phase space
region in t2 becomes smaller and smaller. This results in
the decrease of the logarithmic distributions in Fig. 4 for
|t2| ≤ 10−2. In the case of the elastic production dσγ/dt2
increases as 1/|t2| as t2 → 0. The corresponding logarith-
mic distribution then shows a plateau which is cut off by
the upper phase space limit of t2 [22]. Another and ex-
perimentally preferred variable to measure is |kT | ≡ kT ,
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Fig. 4. The Log10(−t2) distributions for elastic π0 produc-
tion (solid line) taken from [22] compared to that of inelastic
production (dashed line), integrated over the whole resonance
region (1.11 ≤ MX ≤ 1.99 GeV).

the transverse momentum of the pseudoscalar mesons, de-
fined relative to the beam axis. At HERA kT distribu-
tions can be measured for values of kT greater than O(0.1
GeV). The photoproduction cuts of (2) restrict the trans-
verse momentum of the incident photon to be smaller
than O(0.1 GeV), so in our case there is practically no
distinction between the beam axis and the photon axis.
Then within the accuracy of the EPA calculations we have
t2 = −k2

T . The complete electromagnetic result dσγ/dkT

for all four pseudoscalars is shown in Fig. 5. We see that
applying a cut kT > 0.1 GeV the break-up cross section
represents a much larger fraction of the total then for the
integrated cross sections (Table 1).

3.2 The ∆(1232) resonance

In this section we consider the hadron final state X to
be the resonance ∆(1232), and evaluate the cross section
in two ways. Firstly we use the procedure of Section 3.1
but restrict ourselves to the ∆ region which we define as
1.11 ≤ MX ≤ 1.40 GeV (see Fig. 3). Secondly the ∆ is
treated in the isobar model [36] as a stable particle (zero
width approximation) of spin 3/2.

A spin 3/2 particle can be described [37] by a vector-
spinor Rµ, which is contained in the direct product of the
vector and the Dirac representation of the Lorenz group:

Rµ ε (
1
2
,
1
2
) ⊗ [

(
1
2
, 0) ⊕ (0,

1
2
)
]
.

To project out the spin 3/2 part of this reducible represen-
tation corresponding to the ∆-particle one has to require
γµRµ=0 and pµ

∆Rµ=0 [37,38] and that every component
of Rµ fulfills the Dirac equation (p∆.γ − m∆)Rµ=0. Let

Rµ(p∆, i) (i=1,...,4) be a set of normalised basis vector-
spinors:

R̄µ(p∆, i)Rµ(p∆, j) = δij i, j = 1, ..., 4. (27)

To calculate the partial width or the total and differential
cross sections we only need the polarisation sum Sµν . Us-
ing the above conditions we get for the polarisation sum
(v∆ = p∆/M∆)

Sµν(p∆) =
∑

i

Rµ(p∆, i)R̄ν(p∆, i)

=
1
3

(γ.v∆ + 1
2

)(
3gµν − 2vµ

∆vν
∆ − γµγν

)
×

(γ.v∆ + 1
2

)
. (28)

The coupling of the ∆ resonance to the proton and the
photon is parametrised through

2efγR

M∆
εµνρσpρ

∆pσ GD(q2
2), (29)

which corresponds to the covariant formulation of the iso-
bar model [36]. Here GD is defined in (23) and fγR is the
coupling constant. From (29) together with (28) we can
calculate the ∆ decay into a real photon and a proton.
The result is

Γ (∆+ → pγ) =
e2f2

γR

3 π

(M2
∆ − m2

p)3

8 M5
∆

. (30)

This partial decay width is known experimentally [39,40],
Γ (∆+ → pγ)= 0.65 ± 0.02 MeV. Taking the central value
from which it follows that |fγR|=2.4. Now everything is
fixed and we can easily derive the hadron invariant func-
tions W∆

1 , W∆
2 :

W∆
1 =

f2
γRG2

D

3M4
∆m2

p
((pq2)2−p2q2

2) f(pq2, t2) δ((p + q2)2−M2
∆),

W∆
2 =

f2
γRG2

D

3M4
∆m2

p
(−p2q2

2) f(pq2, t2) δ((p + q2)2 − M2
∆),

f(pq2, t2) = {(mp + 2M∆)m2
p + 2(mp + M∆)pq2

+ mp(M2
∆ + t2)}. (31)

Having derived the hadron tensor it is then simply a task
of contracting indices to get the cross section of photon
proton scattering into a PS and the ∆+ and, by applying
the EPA, the total electroproduction cross section.

σγ =
∫ ymax

ymin

dy

y
n(y)

∫ t2max

t2min

dt2
dσγ

γp

dt2
(s2, t2),

dσγ
γp

dt2
=

e2f2
γRG2

Du2
PST 2

384mpM3
∆π(s2 − m2

p)2t22

(
(mp + M∆)2 − t2

)
×

{
m4

PS(m2
p − M2

∆)2 − 2t2m
2
PS

(
M2

∆(m2
PS

+M2
∆ − s2) + m2

p(s2 − M2
∆)

)
+ t22

(
m4

p + m4
PS

+M4
∆ + 2m2

PS(2M2
∆ − s2) + 2m2

p(m2
PS − s2) − 2M2

∆s2

+2s2
2
)

+ 2t32
(
s2 − m2

p − m2
PS − M2

∆

)
+ t42

}
(32)
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Fig. 5. a The complete electromagnetic result for the kT distributions of π0 (solid line), η (dashed line), η′ (dashed dotted line)
and ηc (dotted line) production. b The elastic dashed dotted line and the inelastic contribution (dashed line) together with
the full electromagnetic result for pion production
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Fig. 6. a Log10(−t2) distributions for the delta resonance region, calculated from the γ∗p cross section data as explained in
Sect. 3.1, integrated over the invariant mass range 1.11 ≤ MX ≤ 1.4 GeV (dashed line), and from the isobar model (solid line).
b σT = Σ at MX = 1.215 GeV from (23) as a function of t2 (dashed lines) compared with σT calculated from W∆

1 .

This calculation is compared with the result for dσ/dLog10
(−t2) of Sect. 3.1, restricted to the ∆ region in Fig. 6a.
The comparison is quite satisfactory. The deviations can
be understood qualitatively by plotting σT = Σ from (23)
at MX = 1.215 where the curve in Fig. 3 has its maximum,
as a function of t2 together with σT calculated from W∆

1 in
(31) using the definition (22) and replacing the δ-function
in (31) with 1/(πM∆Γ ) where Γ is the total width of the
∆, Γ ≈ 120 MeV [35] (Fig. 6). For |t2| ≤ 0.1 GeV2 the fit

(23) to the measured cross section Σ is somewhat larger
due to a significant S-wave component which is absent in
the calculation of the ∆ alone but the shapes are nearly
the same. For |t2| ≥ 0.1 GeV2 the model calculation of σT

decreases too slowly compared to experiment. In essence
this translates directly into the shapes of Fig. 6a where for
|t2| ≤ 0.1 GeV2 the differential cross section with respect
to the logarithm of the exact result is a little bit larger
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Fig. 7. Diagram for reaction (33) with pomeron exchange.

than the one of the model calculation whereas for |t2| ≥
0.1 GeV2 the model calculation overshoots the exact one.

3.3 Production of an additional photon
in the final state

In this section we discuss a possible background for the
odderon reaction (1): production of a pseudoscalar and
an additional photon

e±(p1) + p(p) → e±(p′
1) + PS(k) + γ(pγ) + X(pX).(33)

This is of course a reaction with a final state differing from
(1), thus from a theoretical point of view there can be no
confusion. But in real experiments the photon in (33) can
escape detection and then (33) can mimic (1). Now the
point is, that in (33) there can be a contribution from
pomeron exchange which couples strongly to the proton
in both the elastic and inelastic cases. This gives rise to
two types of background which we now estimate.

Consider the diagram in Fig. 1a. If we attach a photon
to the electron line or to the proton line, to any of the
lines of X, or to the p−X vertex, we still must have odd-
eron exchange. Thus these cases cannot be implemented
by pomeron exchange. The only case where the pomeron
comes into play is, if we attach the photon in the middle
vertex (Fig. 7). Note that no internal bremsstrahlung oc-
curs here, since the pseudoscalar is neutral. We estimate
now the cross section for the process of Fig. 7 for the case
where PS is a π0 and X a proton using two simple models
(Fig. 8). In the first model (Fig. 8a) we assume that the
incoming photon fluctuates into a ρ0 or ω which interacts
with the incoming proton by pomeron exchange and de-
cays with a certain invariant mass distribution, given by
the Breit-Wigner propagator, into a pion and a photon.
In the second model (Fig. 8b) the incoming photon is as-
sumed to split into a real photon and a virtual pion which
interacts again by pomeron exchange with the proton. In
both cases the photon is radiated by the internal quark
structure of either the vector mesons or the pion.

To estimate the order of magnitude for the first con-
tribution (Fig. 8a) we calculate the integral over the π0γ
invariant mass distribution dσ/dmπ0γ up to an appropri-
ate cut mcut, neglecting the off shell variation of the elastic
ρ0(ω) cross section. The value of mcut must be such that
for mπ0γ > mcut experimentalists will not count the event

as a single π0 candidate. For the H1 experiments as an
example we can set mcut = 0.5 GeV [41]. With this we
find this contribution σ(γp → π0γp) to be below 1 nb.

To estimate the contribution from the diagram Fig. 8b
we use the same γγπ0 coupling as in (19), neglecting the
variation of this coupling for slightly off shell pions. Again
for the H1 experiment in the HERA frame an “internal”
final state photon will be seen in the detector if it has a
momentum around 1 GeV or larger [41]. Due to the γγπ0

coupling and the phase space measure of the photon the
contribution to the cross section for a photon lost in the
beam pipe is negligible, even for momenta of the photon
larger than 1 GeV. So in our calculation we restrict the
momentum of the outgoing photon to be smaller than 1
GeV and make a soft photon approximation neglecting the
kinematical dependence of the elastic π0p cross section on
the photon momentum pγ . In this way we find the second
contribution to σ(γp → π0γp) to be at most about 6 nb
which is again small compared to (14),(16). Since the first
contribution is small compared to the second one, it is not
necessary to consider the interference terms.

To summarize: we estimate that with realistic exper-
imental cuts pomeron exchange can give a cross section
for the reaction (33) with PS=π0 of at most about cEPA ×
6 nb = 82 pb. Similar estimates apply to the production
of the other pseudoscalars. Thus there appears to be no
serious problem with background from this process, al-
though clearly in an experimental analysis one has to
make more detailed background studies using the avail-
able Monte Carlo generators where the standard processes
of Fig. 8 should be included in order to optimise the cuts
discussed above.

4 Conclusions

We have calculated pseudoscalar electroproduction by
odderon exchange with nucleon dissociation in a specific
model which has proven successful in processes dominated
by pomeron exchange. The principal conclusion is that the
cross section is significantly larger for nucleon breakup
than when the nucleon remains intact. We have also pre-
sented the results of an “exact” calculation of the same
process by photon exchange. When combined with the
previous calculation for the elastic case [22] we have a
precise prediction for the purely electromagnetic cross sec-
tion.

In Fig. 9 we show for π0 production the distribution
of the pion’s kT summed over the elastic and all inelastic
channels for the electromagnetic exchange and summed
over the 2P resonance channels for the odderon exchange.
For a strict quark-diquark picture of the nucleon there is
no odderon exchange contribution in the elastic channel.
Interference terms are not taken into account here. Even
taking the most pessimistic view of the uncertainties in
the model the process should be observable at HERA.
This would establish the soft odderon as an exchange-
object in high energy scattering on an equal footing with
the soft pomeron. On the other hand failure to observe
any significant deviation from the electromagnetic result
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Fig. 9. The kT distribution in pion production from the 2P
resonance channels for odderon exchange (solid line) calculated
from the amplitude (12) of Sect. 2 compared to the complete
electromagnetic result (dashed line). Interference contributions
are not taken into account.

would be clear evidence for the complete failure of our
model. One possible conclusion would then be that the soft
odderon really does not exist and that our understanding
of diffractive processes is much less than is believed.

The competing hadronic process, Reggeised ω
exchange, can be estimated from what is known about π0

photoproduction at low energies,
√

s ≤ 5.5 GeV and the
falloff with energy given by Regge theory: dσ/dt2|ω−exch ∼
s2 αω(t2)−2 with αω(0) ≈ 0.18 to 0.5. The result is very
much smaller than the calculated odderon contribution
and is not a serious background to it. However it could
conceivably be sufficiently large to interfere with the pho-
ton exchange amplitude and so simulate a very weakly-
coupled odderon. The experimental background from pro-
cesses which produce a pseudoscalar and a photon, which
is unobserved, is not serious when realistic cuts are ap-
plied.
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(1994)

14. H.G. Dosch, T. Gousset, G. Kulzinger, H.J. Pirner: Phys.
Rev. D 55, 2602 (1997); M. Rueter, H.G. Dosch: Phys.
Rev. D 57, 4097 (1998); E. Ferreira, F. Pereira, Phys.
Rev. D 55, 130 (1997), ibid. D 56, 179 (1997); O. Nacht-
mann, in Perturbative and Nonperturbative As-
pects of Quantum Field Theory, edited by H. Latal,
W. Schweiger (Springer Verlag, Berlin, Heidelberg 1997)

15. H.G. Dosch, T. Gousset, H.J. Pirner: Phys. Rev. D 57,
1666 (1998)



E.R. Berger et al.: Odderon and photon exchange in electroproduction of pseudoscalar mesons 501

16. G.Kulzinger, H.G.Dosch, H.J.Pirner, report hep-
ph/9806352, 1998, to appear in Eur. Phys. J. C

17. E. Berger, O. Nachtmann, Eur. Phys. J. C 7, 459 (1999)
18. M. Rueter, H.G. Dosch, Phys. Lett. B 380, 177 (1996)
19. P. Gauron, B. Nicolescu, Phys. Lett. B 238, 406 (1990)
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